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ABSTRACT
High-quality stereo and optical flow maps are essential for a multi-
tude of tasks in visual media production, e.g. virtual camera naviga-
tion, disparity adaptation or scene editing. Rather than estimating
stereo and optical flow separately, scene flow is a valid alternative
since it combines both spatial and temporal information and re-
cently surpassed the former two in terms of accuracy. However,
since automated scene flow estimation is non-accurate in a number
of situations, resulting rendering artifacts have to be corrected man-
ually in each output frame, an elaborate and time-consuming task.
We propose a novel workflow to edit the scene flow itself, catching
the problem at its source and yielding a more flexible instrument
for further processing. By integrating user edits in early stages of
the optimization, we allow the use of approximate scribbles instead
of accurate editing, thereby reducing interaction times. Our results
show that editing the scene flow improves the quality of visual re-
sults considerably while requiring vastly less editing effort.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene Analy-
sis—Depth cues; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Motion; H.5.2 [Information Interfaces and Rep-
resentation]: User Interfaces—Interaction styles

Keywords
scene flow; stereo; optical flow; interactivity; user interface; image-
based rendering; view interpolation

1. INTRODUCTION
In visual media productions, several editing operations in post-

production require information about scene depth and/or motion.
Due to the current popularity of stereoscopic 3D movies, depth
has taken a prominent role for all manner of stereo post production
tasks [21], while motion is used primarily for slow-motion, frame
upsampling and motion-based effects such as motion blur.
∗Video and further paper details available under:
http://graphics.tu-bs.de/publications/ruhl2015acmmm/
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Figure 1: User interface for a scene recorded by four cameras.
Top and middle row: View interpolation towards the cameras
at times t0 and t1 using one source frame and the current scene
flow. The user can toggle the warped vs. recorded frames to
identify visual artifacts. Bottom row: color-coded visualization
of the current depth z and 3D motion u,v,w estimate.

Up to now, multimedia authoring tools have estimated depth
and motion separately using only two images each, an under-deter-
mined and ill-posed problem. Since there are strong links between
spatial and temporal image correspondences, i.e. object texture and
boundaries are present in both, using joint optimization in the form
of scene flow [15] is a promising direction to improve the robust-
ness of the estimation; stereo and optical flow are then mere repro-
jections of the scene flow into specific cameras at specific times.

Surprisingly, for over a decade scene flow has not been able
to reach the quality of dedicated stereo and optical flow methods.
Only recently, scene flow algorithms have begun to outperform the
former two [16]. This gives rise to the idea of multimedia content
production tools based on scene flow.

However, similar to stereo/optical flow, scene flow algorithms
are not perfect, showing typical failure cases e.g. for repeating struc-
tures, occlusions and violations of the color constancy assumption.
Flow field artifacts manifest themselves as visual artifacts in ren-
dered output frames, e.g. for virtual camera views. Usually, visual
artists employ image editing tools such as Adobe Photoshop to re-
pair those visual artifacts frame-by-frame. Alternatively, they can
use keyframe animation in tools such as TheFoundry NUKE or
Adobe AfterEffects to model spatiotemporal transitions manually.
Both are elaborate and time-consuming tasks whose effort is linear
in the number of output frames or transitions.

For this reason, first editing tools for stereo and optical flow
fields have recently been developed. They range from relatively di-
rect cut&paste tools [6] to shape-fitting approaches [23]. However,
to the best of our knowledge, no existing multimedia authoring tool
includes scene flow yet. Our contribution is the first workflow that
provides scene flow editing capabilities, allowing interactive ma-
nipulation of an ongoing scene flow estimation.
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(a) scene flow variables (b) data term components (c) inner Ax = b equations; some row for v

Figure 2: Optimization details. (a) The 4D flow components z, u, v, w are modeled in world space, allowing for an arbitrary number
of cameras to support the “hero camera” C0; arrows denote depth and motion. (b) The data term comprises a motion term BCm(z,v),
a depth term BCs1(z) and a depth-after-motion term BCs2(z,v); arrows denote the frames used for data term evaluation. (c) The
Ax = b system of linear equations links u, v, w and z and retrieves support information from the 4-neighborhood, here: a row for v.

1.1 Related Work
In multimedia authoring, depth map editing has become popular

with the latest recurrence of stereoscopic 3D movies, having two
complementary approaches: stereo conversion for videos shot with
a single camera, and stereo estimation for footage recorded by two
cameras. In stereo conversion, 2D video is converted to 3D video
by manually creating a depth map for each input frame. Current ap-
proaches use scribble-based interfaces to draw depth scribbles and
interpolate for the remaining pixels [5, 18], or use a set of sparse
depth (in)equalities to add depth to cartoons [14]. For footage cap-
tured with stereo cameras, user interaction is often used to guide
stereo matching. Current approaches provide sparse ground truth
initializations in the form of point correspondences [17] or match-
ing splines [9] while we use matching regions; remove outliers for
better depth interpolation [3] or restrict the cost volume and en-
hance local depth resolution [10]; use geometric model fitting and
discontinuity brushes in a belief propagation framework [23] where
we use discontinuity scribbles; or modify local weights in a varia-
tional energy functional [4], which is part of our approach too.

Optical flow editing is useful for all manner of temporal effects,
or when employing multiple non-synchronized cameras [7]. Cur-
rent approaches use cut&paste on a flow field to match regions
via perspective transformation and to recompute optical flow lo-
cally [6], or provide approximate correspondence regions which are
then refined within further optimization [11], similar to our method.

To the best of our knowledge, no approach for scene flow editing
exists. The closest in spirit to our method are the stereo editing
approach by Doron et al. [4] and the optical flow editing approach
by Ruhl et al. [11] in the sense that both modify a variational energy
functional, and the latter exploits the image pyramid for refining
approximate user input.

1.2 User Interface
Our objective is the creation of smooth spatiotemporal view in-

terpolation. Fig. 1 shows our user interface: A scene has been
recorded with four cameras Ck at two time steps t0 and t1, yielding
frames Ik

t . One source frame has been selected (I0
0 in the following,

w.l.o.g.) and warped fully towards all other cameras and time steps
using the scene flow. Ideally, the interpolated frames are equal to
the recorded frames Ik

t ; the user can check this by toggling between
recorded/interpolated frames.

The scene flow is estimated in the background using a coarse-to-
fine image pyramid with levels L = Lmax..0, where 0 is the finest

resolution level. At each step of the optimization, the user interface
is updated to show the warped frames at increasingly higher reso-
lutions and warped using better scene flow estimates. The user ob-
serves the optimization and identifies visual artifacts in the warped
frames as soon as they become apparent on some (early) level L.
Once such an error has been identified, the user pauses the estima-
tion and uses our editing operations to guide the algorithm.

This guidance is taken as coarse initialization or soft constraint
while the ongoing optimization determines the subpixel-precise fi-
nal solution. In this manner, we benefit from both human scene
recognition and subsequent algorithmic refinement.

2. PROBLEM FORMULATION
In order to develop appropriate editing operations, we first have

to analyze the failure modes of scene flow estimation. We base our
analysis on the well-known multi-view scene flow by Basha et al.
[1, 8]. Scenes are recorded with an arbitrary number K of cameras
C0..K−1, one of which is designated as the so-called “hero” camera,
at two frames t0 and t1, making it usable not only for stereo cameras
but also e.g. for trifocal cameras [12]. For the hero camera (C0 in
the following, w.l.o.g.), we reconstruct the per-pixel depth z and
the 3D motion v = (u,v,w) in world space, Fig. 2 (a). Assuming
brightness constancy, we use a variational energy minimization:

E(z,v) =
∫

Ω

(BCm +BCs1 +BCs2)︸ ︷︷ ︸
data term

+α (Sm +µSs)︸ ︷︷ ︸
smoothness term

dxdy (1)

with α balancing data vs. smoothness and µ balancing motion
vs. depth smoothness. Using recorded frames Ik

t from cameras Ck
at time steps t = 0..1, the subterms are, Fig. 2 (b):
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∑
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2) (4)

Sm(v) = ψ(|∇u|2 + |∇v|2 + |∇w|2) (5)

Ss(z) = ψ(|∇z|2) (6)

with BCm,s1,s2 the brightness constancy data terms for motion,
depth and depth-after motion, Sm,s the smoothness terms for mo-
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Figure 3: Common artifact causes. (D1) color constancy violation: the ball rotates to the right while the specularity stays in place.
(D2) ambiguous displacements of three spheres (D3) disoccluded region without proper source region (D4) low-textured regions
(S1) ambiguous discontinuities: not all image gradients are discontinuities. (S2) fine-scale objects. See Fig. 4–7 for artifact details.

tion and depth; occlusion maps om,s1,s2 deactivating the data term
locally, image space points pk

t=0(z) and pk
t=1(z,v) reprojected from

world space points P0 and P1 into a camera k, and the non-quadratic
robust Charbonnier penalty ψ(s2) =

√
s2 + ε2 [13].

Now where does this model have failure cases? We identified six
typical situations, exemplified in Fig. 3 by both synthetic and real-
world scenes. Row 1 shows input frames leading to artifacts; row 2
additionally motivates the scenarios. Four problems arise from the
data term (D1–4) and two from the smoothness term (S1–2):

(D1) Violations of brightness or color constancy assumption.
Any reflectance, specularity or other non-Lambertian property such
as shadows can cause pixels in one image to simply not look the
same in other images, invalidating the data terms BCs1,s2 spatially
and/or BCm temporally. Thus, we would like to deactivate the data
term locally, leaving the region to the smoothness term.

(D2) Spatial ambiguities or large displacements. Repeating or
similar structures have multiple local minima and can be incor-
rectly matched in the energy minimization. Also, since variational
approaches such as ours handle large displacements on coarse im-
age pyramid levels, an object smaller than its motion between t0
and t1 might be oversmoothed in the pyramid during downsam-
pling, effectively vanishing. In these cases, we would like to give
the algorithm some correspondence hint.

(D3) Occluded regions. Between two images Ik
t , occluded pixels

have no proper target in BCm,s1,s2, violating the color constancy
assumption. Other images might still contain the same region, so
in this case we would like a highly selective version of data term
deactivation. Additionally, should no image contain the occluded
region, smoothness will now fill the region from all sides, which
is usually not the desired effect, so we would like to be able to
influence the smoothness propagation direction.

(D4) Low-textured regions. A uniform case of ambiguous match-

ing, low texture is ideally resolved by the smoothness terms Sm,s,
since the data term has equal penalties everywhere. However, noise
has a comparatively large influence in BCm,s1,s2. Thus, we would
like to either provide some hint regarding matching regions, or pro-
mote uniform z and v for that region.

(S1) Discontinuities. The smoothness terms Sm,s do not actively
detect object boundaries, and uniformely demand e.g. |∇u| in Eq. 5
to be low. Robust approaches like ours avoid over-penalization
of discontinuities when compared to quadratic terms but still re-
quire smoothness everywhere. Furthermore, Vogel at al. [16] argue
that w motion around discontinuities can often be “simulated” by u
and v motion to avoid a smoothness penalty, circumventing correct
discontinuity formation. Heuristics like anisotropic regularization
[20] explicitly encourage the formation of discontinuities along im-
age gradients, but cannot differentiate between true object bound-
aries and texture gradients (e.g. striped shirt). Thus, we would like
to specify “true” discontinuities manually, either as sharp boundary
or as broad brush indicating boundary candidates.

(S2) Inappropriate smoothness weight. Weighting the smooth-
ness term vs. the data term is usually done globally, here with α

and µ . Depending on the image content, applying different weights
to different regions may be more appropriate. Setting one global
weight too high results in oversmoothing, preventing deformations
and glueing objects together. Setting the weight too low results
in non-smooth objects distorted by ambiguities in the data term.
Therefore, we would like to control the smoothness weights α and
µ per image region.

3. APPROACH
We distill the above analysis into four interactive editing tools

that can be used in conjunction with each other: An edge tool
(ET) in Sec. 3.1, an occlusion tool (OT) in Sec. 3.2, a smoothness



(a) user interaction at t0 (b) reference image at t1 (c) without user interaction (d) with user interaction

Figure 4: Avoiding artifacts in warped images. Row 1: Correcting a brightness constancy violation (D1). The specular region
is marked as “occluded”, deactivating the data term (a). Warped images should look like the reference (b). Automated scene
flow produces distorted results around the specularity (c). User interaction preserves the sphere’s shape (d). Row 2: Correcting
ambiguous matching (D2). Circular matches provide a local initialization (a). Compared to the reference (b), automated scene flow
cannot determine which ball belongs to which (c). The user’s local initialization is enough to converge to the correct result (d).

tool (ST) in Sec. 3.3, and a match tool (MT) in Sec. 3.4. We ported
the scene flow by Basha et al. [1] to the GPU, yielding a speedup
factor of 3–5 and enabling interactive feedback to the user. Our
video1 shows all presented tools in action.

To integrate the tools into the scene flow estimation, we need to
consider the optimization algorithm, detailed in Sec. 2.3 of [1]. It
couples the multi-resolution levels with two nested fixed-point it-
erations, where outer iterations update z and v and re-warp the im-
ages accordingly, while inner iterations compute small increments
dz and dv = (du,dv,dw). At each inner fixed-point iteration, the
Euler-Lagrange equations for the variables z, u, v and w are solved
by posing an Ax = b problem, Fig. 2 (c). A is sparse and has 4
times the number of pixels rows and columns, with elements close
to the diagonal referencing the other variables (e.g. v references u,
w and z at the same pixel) and receiving support information from
the 4-neighborhood.

3.1 Edge Tool (ET)
Human scene understanding can easily distinguish true discon-

tinuities from in-object gradients (e.g. recognizing a striped shirt
as such), so we allow the user to draw a polygon using the mouse
to form an undirected edge scribble on object discontinuities in the
hero camera image I0

0 , Fig 5– 7. Pixel neighborhood across such a
scribble will be ignored in the smoothness term, addressing prob-
lems (S1) and (D3). This unfortunately requires precise user input.
Ideally, a broad stroke could be used to define a region in which
anisotropic filtering would find the exact edge location, however in
practice failure cases occur mostly around less visible discontinu-
ities (note that e.g. in [4], Fig. 2 (b) vs. (h), the discontinuity brush

1Video and further paper details available under:
http://graphics.tu-bs.de/publications/ruhl2015acmmm/

on the desk edge is rather ineffective). Therefore, we keep using
exact scribbles.

For integration into the scene flow, we cannot modify the energy
functional directly since α is applied omnidirectionally, while we
desire a discontinuity perpendicular to the user defined edge. In-
stead, consider the realization of Sm, Eq. 5, into the neighborhood
coefficients v←, v→, v↑ and v↓ in Fig. 2 (c). For a pixel p = [x,y]T ,
e.g. v← is defined as (derived from Eq. 35 in Appendix C of [1]):

v← =−α ·µv ·
1
2
(divuvw(x,y)+divuvw(x−1,y)) (7)

with divuvw the divergence coefficients for u, v and w derived
from Sm (divz is used analoguously for realizing Ss, Eq. 6, into z←).
In order to deactivate the neighborhood relation, we test whether a
segment of the edge scribble intersects the line between the center
points of the current pixel and the left neighbor pixel, and if so, set
v← to zero. The user can also enter a small numerical weight using
the keyboard to produce a less sharply pronounced discontinuity.

3.2 Occlusion Tool (OT)
Within a mouse-clicked closed polygon on the source image I0

0 ,
the user can deactivate the data term w.r.t. a number of images Ik

t
by selecting those images using the mouse or keyboard, Fig 4–7,
making this tool useful both for true occlusions as well as for color
constancy violations, addressing (D1) and (D3). As long as other
cameras can see the region, the scribble can be defined very ap-
proximately. For a complete data term deactivation, the region can
also be approximately defined but expected smoothness propaga-
tion must be considered; in practice, an additional edge can be used
to stop unwanted propagation directions.

Regarding integration into the scene flow, consider the realiza-

http://graphics.tu-bs.de/publications/ruhl2015acmmm/


(a) user interaction at t0 (b) reference image at t1 (c) zoomed at t1 (d) without user interaction (e) with user interaction

Figure 5: Warped images. Row 1: Correcting occluded regions to the left and right, and a disoccluded region in the middle (D3),
all under good texturing conditions. Occluded regions are marked as such, and an edge allows the formation of a discontinuity (a).
Warped images should look like the reference at t1 (b, c). Automated scene flow produces uneven results around the discontinuity (d),
whereas the corrected version pulls the flow field apart very evenly (e). Row 2: Correcting low-textured regions (D4). Same input as
above, but the edge can be placed almost arbitrarily (a). Compared to the reference (b, c) and to above, automated scene flow suffers
from uneven smoothness propagation (d). The edge scribble allows for a uniform smoothness propagation towards the left (e).

tion of BCm and BCs2, Eq. 2,4, into the diagonal coefficient av in
Fig. 2 (c). For a pixel p, av is defined as (derived from Eq. 35 in
Appendix C of [1]):

av = α ·µv ∑
q∈N(p)

1
2
(divuvw(p)+divuvw(q)) (8)

+
K−1

∑
k=0

ok
mψ

k
m(.) · (Iwk

t[v])
2 +

K−1

∑
k=1

ok
s2ψ

k
s2(.) · (Iw

k
t[v]− Iw0

t[v])
2

with N the 4-neighborhood; ψm and ψs2 derived from BCm,s2;
Iwk

t[v] the relevant images (c.f. Fig. 2 (b)) warped with the current
z/v solution and differentiated w.r.t. v; and p only noted where nec-
essary to improve readability.

The occlusion variables om and os2 are from Eq. 2 – 4 (os1 is used
for calculating az). We locally replace os1 for spatial occlusions
and om and os2 for temporal occlusions, or all for total data term
deactivations, e.g. for a moving specular region. When set to zero,
the data terms BCm,s1,s2 are effectively omitted and do not factor
into av at all, leaving the smoothness Sm,s as the only influence.

3.3 Smoothness Tool (ST)
Within a mouse-clicked closed polygon on the source image I0

0 ,
the user can assign stronger or weaker smoothness weights α and µ

using the keyboard, Fig 7 row 2, addressing (D4) and (S2). Under-
smoothing can be easily solved by selecting a region and increasing
α and/or µ . Oversmoothing can be solved either by decreasing α/µ
or by providing an edge scribble. In practice, a common strategy
is to define regions with increased smoothness as slightly too large
and then using the edge tool to encourage discontinuity formation.

For integration into the scene flow, consider av in Eq. 8 and v←
in Eq. 7 again. To modify the smoothness, we locally replace α

and µ by custom user values defined within the closed smoothness
scribble. It is also possible to define αZ , αu, αv and αw separately
(same for µ), but in practice this is rarely needed.

(a) (b)

Figure 6: Temporal (a) or spatial (b) match tool (MT) details.

3.4 Match Tool (MT)
Starting with a mouse-clicked closed polygon or circle in the

source image, the user can achieve an approximate target displace-
ment into another image either directly by using the mouse to click
the new location or by using the keyboard to apply translation, rota-
tion, and scaling, Fig. 4 row 2, similar to [6] and addressing (D2) as
well as (D1) and (D4). For spatial matches at the same time, a
guide along the epipolar line is provided to the user. For temporal
matches, no guides are possible since movement is not constrained
in 3D space. The match does not need to be very precise, since it is
used merely as initialization that is further refined by the data term.
In practice, matches are often necessary for large displacements,
and subsequently incur a strong smoothness penalty Sm, Eq. 5; this
can be ameliorated by an additional edge scribble. It is also a good
strategy to define matches on a coarse pyramid level L as early as
possible to allow the data term to refine the match on finer levels.

For integration into the scene flow, each pixel ps inside the source
region is first related to a target pixel pt , Fig. 6, using an affine
transform based on the user-defined translation, rotation and scale.
In the case of motion, we project both source and target pixel into
world space using the current z solution, yielding world space points
Ps and Pt , Fig. 6 (a); the difference between them is the new motion



(a) user interaction at t0 (b) reference image at t1 (c) zoomed at t1 (d) without user interaction (e) with user interaction

Figure 7: Warped images. Row 1: Correcting an ambiguous discontinuity (S1). As in Fig. 5 row 1, occluded regions are marked,
and the edge allows formation of the discontinuity (a). Warped images should look like the reference at t1 (b, c). Unaided scene
flow results in craggedness around the discontinuity (d), while the corrected discontinuity is very even (e). Row 2: Preserving fine
structures (S2). The stick receives an increased smoothness weight (a). Compared to the reference (b, c), automated scene flow often
smooths the background flow over the stick (d). The corrected version preserves the stick structure (e).

vector v. In the 1D constrained case of depth, we project camera
rays Rs and Rt into world space, Fig. 6 (b), calculate the short-
est line between the rays via closed form solution, and take the z
component in the middle of the line.

At each outer fixed-point iteration, we locally set the current z
and/or v solution to the calculated value. During matching, we re-
peat this up to a level Ld chosen by the user; this leads to a stable
and predictable influence on the surrounding region similar to the
strategy in [11] (however, we do not use an anisotropic term; note
how the user displacements in [11] are only shown for regions with
good object/background image gradients). The lower (finer) Ld ,
the less iterations will be performed to refine the match. Depend-
ing on the situation, this allows the user to specify either refined
approximate or enforced precise matches.

3.5 Direct Matching
In addition to the intra-optimization tools above, we also allow

the user to match regions after the estimation has finished, effec-
tively emulating [6] for scene flows. However this is only needed
for rare intractable cases (e.g. two grids moving against each other),
requires very precise user input and was not used for our results. It
also requires waiting for the final scene flow, whereas we usually
run the last refinement levels unattended.

3.6 View Propagation Tools
When scene flows for multiple hero cameras are desired (e.g. to

produce the morphed frames in our results), the first solution is to
reproject our world space scene flow into the other cameras. How-
ever, pixels disoccluded in the target camera will be undefined, ne-
cessitating a new scene flow calculuation.

We therefore implemented the propagation of scribbles towards
other cameras and time steps according to the estimated scene flow.
Smoothness and matching regions are reprojected using z and v ob-
tained at the centroid of the region. Edges must either partially en-
close some region or be defined in pairs that, when connected, form
a closed region whose centroid can be taken. Occlusion regions are

often on the background, near a discontinuity; they must either be
redefined or can be transferred by taking the centroid of a nearby
smoothing or matching scribble.

In all cases, we allow further translation/rotation via mouse clicks
and numpad keys. For spatially propagated scribbles, usually only
a minority must be corrected and even fewer redefined. Tempo-
rally propagated scribbles suffer from missing temporal symmetry
more often and thus need redefinition more frequently. Compared
to manual redefinition of all scribbles, the propagation approach
saved considerable time in the creation of our results.

4. RESULTS
Our results are presented in two parts, and shown in motion in

our video2. Sec. 4.1 shows the hero camera frame at t0 warped
towards t1. This approach is best suited for quality assessment be-
cause artifacts in the scene flow are directly identifiable. Sec. 4.2
presents results morphed from all cameras at both t0 and t1 towards
a virtual camera position kvrt and a time tvrt, i.e. all images are
warped towards the same virtual spatiotemporal location and then
blended. This method produces the visually most pleasing results.
We conclude with a quantitative evaluation of the rendered output
and a summative user study.

4.1 Warps for Quality Assessment
For a visual assessment of flow field quality, we present the

hero camera’s t0 frame warped fully towards t1. By comparing the
warped frame to the reference frame at t1, flow field artifacts be-
come directly visible. For warping, we use a fully connected mesh
with one vertex in the center of each pixel; we also use nearest
neighbor interpolation because single pixels can be discerned that
way. To clearly demonstrate cause and effect, we present 6 syn-
thetic examples with minimal user interaction, each addressing one
of the failure cases identified in Sec. 2. Often, e.g., an additional

2Video and further paper details available under:
http://graphics.tu-bs.de/publications/ruhl2015acmmm/
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(a) interaction at t0 (b) reference at t1 (c) zoomed at t1 (d) w/o interaction (e) with interaction (f) zoomed at t0

Figure 8: Warped images. Row 1: Capoeira scene with large displacements, low texture and shadows. The foot is matched, shadows
and creases marked as occluded, smoothness increased (a). Compared to the reference at t1 (b, c), the foot motion leads to streaking
artifacts (d). The corrected version forms the foot better (e) given the large displacement from (f). Row 2: Dancing scene with creases
in low textured clothing. A large crease is matched, the outer side marked occluded, smoothness increased (a). Compared to the
reference (b, c), the skirt is not solved well at all (d). The corrected version resolves the motion plausibly (e), with some of the left
border from t0 (f) remaining. Row 3: Family scene with fine structures under complex background. The arm is matched, smoothed,
and marked as occluded where color constancy violations remain (a). Compared to the reference (b, c), the arm is completely
destroyed in (d). The corrected version preserves the shape of the arm (e) and stretches the disocclusion stemming from (f) evenly.

edge scribble could improve the result further but would reduce
clarity. Additionally, we present 3 real-world examples, where all
tools have been applied in combination.

Synthetic Examples. Fig. 4 row 1 shows a rotating textured
sphere with a large specularity, addressing (D1). The color con-
stancy violation is treated by specifying a full spatiotemporal occlu-
sion (OT) that deactivates all brightness constancy terms BCm,s1,s2,
Eq. 2–4. Since the scene flow model does not separate light trans-
port and object surface, moving the specularity with the object is
the geometrically correct choice and the desired effect; alterna-
tively, preserving the specular location would be possible with an
edge scribble (ET) to separate it from the surrounding motion. The
corrected sphere shows intact letters where the automated version
shows distorted ones.

Fig. 4 row 2 shows three diffuse balls with the same texture,
all moving to new locations, addressing (D2). The ambiguous
matching problem is mitigated by providing three manual matches
(MT), which are then refined automatically. Note that as no further
edge scribbles have been applied to the example, the background is
partly drawn with the balls. The corrected balls move to the correct
location where the automated version shows severe misplacement.

Fig. 5 row 1 shows two textured boxes horizontally moving apart
from each other, leading to occlusions of the background and a dis-
occlusion of the red box, addressing (D3). The occlusion prob-
lem is solved by applying the temporal occlusion tool (OT) on the
background. The scribbles may well encompass part of the fore-
ground, as long as the marked foreground is spatially visible in

other cameras. An additional edge scribble (ET) around the green
box targets the disocclusion problem, and leads to a consistent dis-
continuity formation at the purple line. Note that had we relied
on anisotropic smoothness, it would have lead to wavy edges as in
(d) due to irregular brightness coincidences e.g. between box and
background. The corrected boxes show straight borders and dis-
continuities where the automated version shows distorted ones.

Fig. 5 row 2 shows the same two moving boxes from row 1 but
this time untextured, addressing (D4). While it is impossible to
determine the scene flow quality visually in the middle of the im-
age, the same two temporal occlusion scribbles (OT) and one edge
scribble (ET) at some plausible box boundary solve the problem.
Our tests confirm that the edge scribble is indeed necessary; with-
out it, irregular smoothness propagation from the top and bottom of
the boxes arrives as incoherent horizontal u motion at the left and
right rectangle borders. The corrected box preserves the straight
border where the automated version produces irregular curvature.

Fig. 7 row 1 is almost identical to Fig. 5 row 1 but this time
the two boxes have the same texture and are much more difficult
to disambiguate, addressing (S1). The same user interaction from
Fig. 5 solves the issue here as well, since it allows flow field diver-
gence at the correct location (ET) and disallows impossible pixel
matches in the regions occluded at t1 (OT). The corrected boxes
preserve straight borders and discontinuity where the automated
version shows distorted results.

Fig. 7 row 2 shows a thin, slowly moving structure that is prone
to being overridden by the surrounding background due to its rela-



(a) without user interaction (b) with user interaction (c) w/o interaction, zoomed (d) w/ interaction, zoomed

Figure 9: Morphed images from 8 views (4 cameras, 2 time steps). Row 1: Capoeira scene. Different artifacts in the views produce
a halo streaking effect around the foot (c), while the corrected version features only minor motion blur (d). Row 2: Dancers scene.
The blended skirt artifact (c) has vanished in the repaired version (d). Row 3: Family scene. Widely differing failure modes make
the blended arm almost invisible (c), while the correct version preserves the arm’s shape.

tively small influence in the smoothness term evaluation, address-
ing (S2). The problem is solved by demanding a large smoothness
weight for the stick, using a region scribble around the structure
(ST). Note that an additional edge scribble would reduce the impact
of brightness coincidences between stick and background texture
further. The corrected stick retains its shape while the automated
version deforms its shape considerably.

Real-World Examples. We use all four tools in combination on
our real-world footage, which was recorded with 4 RED Scarlet-X
at 4K resolution and 15cm interocular baseline, only approximately
color-graded, and downsampled to 540p to reduce noise.

Fig. 8 row 1 shows a Capoeira scene with fast motion and low-
textured clothing featuring crease deformations and shadows. Con-
sider the high-kicking leg. Foot and lower leg receive increased
smoothness (ST) and an edge (ET) to allow large motions against a
static background. The background above the leg is marked as tem-
porally occluded (OT). An additional match (MT) around the an-
kle is required to overcome an incorrect local minimum. A clothing
crease on the thigh not visible at t1 is also marked as occluded (OT).
Further edits include the standing leg with match and smoothing,

the dark hair being edge-protected from the equally dark back-
ground, and hands being smoothed. The corrected foot shows a
consistent shape where the automated version shows severe streak-
ing artifacts.

Fig. 8 row 2 shows a pair-dance scene with actress/actor occlu-
sions under same-colored clothing, a classic failure case for aniso-
tropic smoothness, and deep clothing creases. Consider the left
side of the skirt. The shadowed and deforming crease is matched
(MT) and left and right side marked as occluded (OT) for true tem-
poral occlusion and color constancy violation respectively. Fur-
ther edits include smoothing the flowing hair and edge-protecting
it against the background; edges around the female dancer’s up-
per arm; increased smoothness and temporal occlusion at the male
dancer’s hand; and smoothing and matching around the foot and
ankle. The corrected skirt shows a plausible shape where the auto-
mated version shows unrealistic folding.

Fig. 8 row 3 shows a complex outdoor family scene with sharp
depth discontinuities as well as fine structures with large motions,
which are usually lost in the downsampling of the image pyra-
mid. Consider the rightmost arm, its color similarity to the right



Dataset auto user RRE Fig. 8
Capoeira (foot)
Dancers (skirt)
Family (right arm)

0.937
0.919
0.879

0.944
0.940
0.880

+12%
+26%
+1%

row 1 (c)–(e)
row 2 (c)–(e)
row 3 (c)–(e)

Table 1: Structural similarity index [19] between the reference
frame at t1 and the images warped to t1 either without (auto)
or with (user) correction. While both scores are already very
good, user interaction yields a further reduction of the remain-
ing error (RRE) of up to 26%.

background, and the hand’s large displacement relative to its size.
The arm is matched (MT), smoothness increased (ST), and edge-
protected (ET). Due to the texture similarity of arm and back-
ground, data term refinement after matching can still produce ar-
tifacts, which are suppressed with the occlusion tool (OT). Note
that the smearing artifacts in the disoccluded region on the left
side of the arm are caused by the fully connected mesh used in
our warping approach. Further edits include smoothness and edge-
protection around the heads; and match, small edge and data term
deactivation via occlusion to repair the leftmost hand. The cor-
rected arm preserves its shape where the uncorrected version tears
the arm apart.

In all examples, editing times are on the order of minutes; ap-
plying the scribbles is a matter of seconds, and observing the effect
forming in the ongoing optimization takes tens of seconds over sev-
eral re-warp iterations. While we already run a GPU scene flow to
achieve interactive feedback, an even faster scene flow algorithm
or faster GPUs would reduce total editing time further.

4.2 Morphs for Rendering
In the following, we present how our tools can be used to im-

prove image-based rendering quality, morphing 8 views (4 cam-
eras at 2 time steps) based on Lumigraph rendering [2]. The vir-
tual camera is defined by a virtual camera position kvrt = 0..3 and
virtual time tvrt = 0..1. Frames are blended with linear temporal
weighting and spatial weighting depending on the viewing angle
per pixel (details in [2]). The best virtual spatiotemporal position
to observe artifacts is in the middle between two cameras and times,
i.e., tvrt = 0.5 and kvrt = 0.5, 1.5 or 2.5 respectively, where in-
put from the 4 adjacent views are maximally warped before being
blended. Below, we show results at tvrt = 0.5 and kvrt = 0.5.

Fig. 9 row 1 shows the improved visual quality of morphs with
user interaction compared to morphs without user interaction, mir-
roring the improvements of warped results, c.f. Fig. 8. On the
Capoeirista’s high foot, the 4 involved views all have differing arti-
facts, each of which are 25% visible as a halo artifact when blended.
The corrected version is spatiotemporally consistent and therefore
able to provide high-quality blending.

Fig. 9 row 2 again shows that user interaction, here on the skirt,
solves the shortcomings of automated estimation. The left side of
the Dancer’s skirt blends 4 different artifacts in the unaided case,
which are replaced with a consistent appearance in the corrected
version.

Fig. 9 row 3 shows the most extreme example. Due to widely
differing arm motions in the 4 automated estimates, the arm effec-
tively vanishes during blending. In contrast, the corrected version
leaves the arm entirely intact. Note that the smearing artifacts in
the disoccluded region left of the arm are rendering artifacts due to
warping with a fully connected mesh. In future work, a more so-
phisticated rendering removing these regions in the relevant views
will improve morphing results.

1 2 3 4 5

not useful

not useful

not useful

not useful

image tools

ineffective

useful (MT)

useful (ST)

useful (OT)

useful (ET)

our approach

effective

3.75

4.25

4

4.33

4.5

3.88

Figure 10: User study with scores 1..5; mean values and stan-
dard deviation are shown. Sample size was 4 experts with both
image editing and stereo and/or optical flow experience. Ques-
tions were general usefulness, relative usefulness of our tool
compared to image-based tools, and usefulness per tool.

4.3 Quantitative Evaluation
In addition to the visual quality, we assess the numerical quality

of our corrected scene flows compared to uncorrected ones based
on the structural similarity index method (SSIM) [19], comparing
fully-warped images to the reference image at t1, Table 1. We report
scores calculated on the partial images shown in Fig. 8 (c)–(e).

User interaction for the Capoeira and Dancers scenes removes
12–26% of the remaining error. In contrast, the Family scene shows
only a 1% reduction, though the right-arm artifact is the visually
most obvious and disturbing of all examples. The close scoring is
probably caused by the color similarity of arm and background.

4.4 Summative Evaluation
Since there are no multimedia authoring tools using interactive

scene flow estimation, we evaluate the relative attractiveness of our
approach against the industry standard, fixing rendered frames with
image-space tools. Our tools are meant for trained visual artists
and not for the general public. As such, we undertook a summa-
tive evaluation with 4 experts in the age range 25–35 with at least 5
years of image processing experience as well as exposure to stereo
and/or optical flow. They were coached in the use of our tools
for up to 20 minutes each, on training footage not used for sub-
sequent evaluation, the latter of which used the Capoeira scene,
Fig. 8–9 row 1. Assuming a moderate number of 10 frames ren-
dered from an automatically estimated scene flow at t0.0, t0.1, t0.2,
.., t1.0, we asked our experts to repair the scene flow for subsequent
re-rendering. For the alternative workflow, we asked them to repair
the 10 originally rendered frames instead, using an image-space
tool of their choice (all chose Adobe Photoshop). At 10 minutes
into either task, the experts were instructed to finish their last op-
eration. Afterwards, the results of both workflows were compared
and the experts were asked to rate both with 1 (not useful) to 5 (very
useful) on the MOS (mean opinion score) scale.

As shown in Fig. 10, the general usefulness of our approach for
the given task was confirmed with a mean score of 3.88. All ex-
perts expressed the wish for real-time scene flow recomputation
after each scribble, which is not yet possible with state-of-the-art
algorithms. Single wishes included using scribbles on target frames
instead of the source frame, and instant comparison against the ef-
fect of previous scribbles. Compared to image-space tools, the rela-
tive attractiveness of our method increased to a mean score of 4.50,
with all experts seeing the built-in spatiotemporal consistency be-
tween frames as a key advantage of our method.

The experts found all four tools similarly useful with mean scores
ranging from 3.75–4.33; all noted that 20 minutes of coaching were



sufficient to use the tools effectively. Given the fact that they are
used to Photoshop, all experts noted that an increasing familiarity
with our tools would probably allow even better results.

5. DISCUSSION
All experts agreed on the effectiveness of our approach as demon-

strated by the improved visual quality of the output frames. The
most desired improvement were instant response times, which re-
quires realtime scene flow algorithms. With respect to the latter,
our scene flow optimization could potentially benefit from a primal-
dual approach in the style of [22], left for future work.

Our scene flow estimation algorithm is a GPU-based re-imple-
mentation of [1]. By integrating user guidance, we expect similar
gains for other scene flow approaches since the failure modes are
based on commmon assumptions and scene properties rather than
algorithmic intricacies.

When used for visual media production, our approach does not
preclude the use of image-based tools; it optionally preceeds it,
reducing but in some cases not fully mitigating image-space work.

Our content production approach has two time savers: First the
approximate way most scribbles can be defined (edges between two
salient regions being the sole exception), and second the arbitrary
number of frames that can be rendered using a single scene flow
field. Additionally, when going from traditional multimedia pro-
duction towards free spacetime navigation, “post-production frame
correction” is not possible because the number of frames is arbi-
trary. In this case, editing depth and motion itself is the only viable
way to produce artifact-free output frames.

6. CONCLUSIONS
In this paper we presented a workflow for high-quality view in-

terpolation with interactive scene flow estimation, useful for spa-
tiotemporal multimedia content authoring. We analyzed common
artifacts during scene flow estimation and presented four interactive
tools to overcome these. By refining the coarse user input to sub-
pixel precision using a variational formulation, we ease the user of
the burden of precise and time-consuming interaction. This vastly
decreases the required effort compared to the common technique
of repairing each rendered output frame by hand. Output rendered
with our corrected scene flow appears plausible to a human ob-
server, making our approach suitable for applications such as vir-
tual spacetime navigation or high-quality image-based rendering.
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