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ABSTRACT
In the post production of a stereoscopic visual media production,
high-quality depth or disparity maps are essential for a number of
workflow components, from initial layer separation, over editing
transfers, to the final depth compositing. With automatic depth
estimation not being perfect, errors lead to increased manual ef-
forts for the artist, e.g. by requiring additional rotoscoping on the
footage. We propose to fix errors in the depth maps instead of in
image space, since multiple workflow steps can benefit from im-
proved depth information. Building upon recent advances in dis-
crete real-time stereo estimation algorithms, we guide the artist by
integrating the cost volume of a stereo matching estimation into the
editing parameters. Our results improve on the good results of au-
tomated algorithms and provide an opportunity for user corrections
in regions that have only partially correct estimates.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene Analy-
sis—Depth cues; H.5.2 [Information Interfaces and
Representation]: User Interfaces—Interaction styles

Keywords
depth maps, stereo estimation, interactivity, user interface

1. INTRODUCTION
Two schools of thought compete in stereoscopic visual media pro-
duction: On the one side full stereoscopic capture and editing,
aided by tools like e.g. Ocula [22], on the other side single-view
capture and generation of the second view with 2D-to-3D con-
version, using tools like PFDepth [16]. Both approaches require
depth information. In the conversion case, considerable effort has
to be spent on rotoscoping and layer assignment, ideally resulting
in temporally coherent depth maps used for second eye generation.
In the case of stereoscopic capture, the data basis for automated
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Figure 1: Fully-automated (b) vs. guided (c) depth estima-
tion. The automated approach [11] solves all Lambertian, well-
textured, non-occluded areas well. Other areas benefit from
approximate user guidance.

depth map generation via stereo estimation is given, at the cost of
increased capturing effort. We concern ourselves with the post-
production of stereoscopic footage only.

The quality of depth maps is essential, since they are used for a
multitude of purposes. In particular, for each editing session one
camera (either left or right; sometimes also a synthesized middle
view) is first assigned as principal view. Any grading, insertion of
CG and ultimately depth compositing is performed on its frames
and subsequently transferred to the other view. Both the selection
of layers in the beginning, the transfer of image editing operations
and the depth compositing in the end require either high-quality
stereo correspondences/depth maps or, barring those, manual cor-
rections in all stages of post-processing. These corrections are usu-
ally performed on the captured or intermediate footage, all in image
space [15]. Tools for image processing are therefore well developed
in order to reduce artist effort.

We propose a complementary approach: Fixing the depth maps in-
stead of fixing the resulting errors in image space. Keeping in mind
that working on depth is not as intuitive as working on images, we
require only approximate user input in the spirit of the “snapping”
behavior found in many common image manipulation programs.
We perform a fast initial stereo estimation based on cost volume
filtering [11], the top-performing local method in 2011 on the Mid-
dlebury index [14], but we do keep the cost volume afterwards. Any
artist operations on the depth map can now be performed in “cost
blocks” inside that cost volume. In particular, depth estimation can
be constrained to consider only depths inside the block, and the
z-resolution can be locally increased to obtain smoother results in
high-salience areas, thus combining the precision of automated es-
timation with human scene understanding.
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Figure 2: Cost block within the initial cost volume, visualized as green-blue bounding box, z-layers shown as red dots in the center.
(a) cost block with a default size in z-direction (b) the user has increased the z-extent of the cost block (c) the user has increased the
number of z-labels within the cost block.

The presented work is only possible thanks to recent advances in
near-realtime, GPU-based, local stereo estimation algorithms. Our
main contribution is the interactive editing of depth maps using
approximate, cost volume-guided, locally refined depth estimation,
useful wherever human scene recognition trumps the capabilities
of stereo matching: Occlusions, noise, specularities, lighting dif-
ferences and other violations of the color constancy assumption.

2. RELATED WORK
Stereo estimation has been an active research area for the last
decades and is still improving, with most of the results being com-
pared on the Middlebury stereo data set [14]. Global and local
optimizations both abound. Due to the large search range and
sharp discontinuities of disparities, discrete methods with a fixed
number of labels are more prominent than variational approaches,
unlike in e.g. optical flow where movements are usually compara-
tively smaller (though dedicated long-range optical flow algorithms
do exist, e.g. [1]). At the moment, discrete methods outperform
continuous ones [14]. Since we consider editing operations, lo-
cal optimizations which are real-time capable are needed. The re-
cently proposed fast cost-volume filtering approach by Rhemann et
al. [11, 7] is the best-performing local method of 2011, and was
9th-ranked overall at that time; it is is based on the guided image
filter by He et al. [5], which has linear complexity due to its O(1)
boxfilter [3]. Our OpenCL implementation is fast enough for inter-
activity (e.g. 0.3s on a Tsukuba image pair [14] with a Nvidia GTX
590). Since basically all correspondence estimation algorithms rely
on well-behaved scenes, with sufficient texture and Lambertian sur-
faces which allow unambiguous matches, there are numerous real-
world cases where human scene understanding can either support
the estimation or correct its errors.

Interactive depth correction and guidance aims at providing the
user with intuitive tools to aid the underlying depth estimation al-
gorithm in otherwise difficult and ambiguous cases. In stereo con-
version, a 2D video is converted to a 3D video by manually es-
tablishing a depth map for the input frames. As “automatic con-
version methods are currently not sufficiently robust for general
applications” [17], high quality methods are often manual, mostly
relying on simple depth painting or adjusting segmented layers of
the images, and as a result, are very expensive, with costs of up
to $100,000 per minute of converted footage [17]. More sophisti-
cated methods use scribble-based interfaces to draw depth and in-

telligently interpolate for the remaining pixels [4, 21] or use a set
of sparse depth (in)equalities to add depth to cartoons [19].

Given more than a single image per frame, user interaction aids
stereo matching by guiding the underlying image correspondence
algorithm. Typical ways are specifying sparse ground control points
which serve as ground truth to estimate the depth for the remain-
ing pixels [20], providing approximate correspondences which can
then be refined by the underlying correspondence algorithm [12, 8,
13], or by removing outliers for a better depth interpolation [2].

Interestingly, user interaction is heavily used in video post-process-
ing tools such as Ocula by The Foundry, e.g. for parallax optimiza-
tion, color adjustment or detail enhancement. However, they almost
always create the necessary disparity maps in an automatic prepro-
cess and provide only relatively simple tools for correction as the
assumption is that the precision of the depth map is sufficient or
given for synthetic scenes [10] which is not the case for the more
complex scenarios we are looking at.

3. COST VOLUME FILTERING
Our initial depth estimation uses a variant of the fast cost volume
filtering method [11]. Given left and right views Il(x) and Ir(x)
with pixel coordinates x = (x,y) ∈ Ω and RGB color values in the
range [0,1], we strive to attain for each x an optimal depth Zl(x) ∈
[dmin,dmax], discretized to labels d ∈ D = {dmin, ..,dmax} from a
set D.

Towards this purpose, we construct a 3-dimensional cost volume
Cl(x,d) for the left view Il . The first two dimensions of Cl are the
image size, and the third dimension is the number of depth labels.
Each entry within the cost volume is initially a truncated sum of
absolute differences (SAD) between the views, using a projection
π(x,d) from left to right view based on standard epipolar geometry
from calibration [18].

Cl(x,d) = (1−α)· min(τ1,||Il(x))− Ir(π(x,d))||)
+ α· min(τ2,‖∇Il(x))−∇Ir(π(x,d))‖) (1)

As in [11], we use α = 0.11 to favor the color term over the gradient
term and τ1 = 0.03 and τ2 = 0.008 to favor only very exact matches.
With the data term set, we now perform a weighted filtering on Cl
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Figure 3: “Tsukuba” scene from the Middlebury data set [14]. (a) left and right view (b) initial depth map [11] and scene layer
representation. The selected area has not been properly resolved due to occlusions by bust and lamp (c) re-evaluated cost block.
Artifacts around the bust head have vanished, but the book pile (to the left of the lamp) now has wrong depth. (d) increasing the
z-extent of the cost block corrects the book pile (e) additionally increasing the number of z-labels refines the region.

to arrive at a smoothed cost volume C′l :

C′l(x,d) = ∑
x′∈Nr(x)

Wx,x′(Il(x′)) ·Cl(x′,d) (2)

The filter weights Wx,x′ depend on the guidance image Il [5], simi-
lar in spirit to the anisotropic smoothness found in many variational
approaches, and are computed on pairs of pixels (x,x′) on a neigh-
bourhood Nr within a filter radius r:

Wx,x′(Il) =
1
|Nr| ∑

k:(x,x′)
(1+(Il(x)−µk)

T (Σk + εU)−1(Il(x′)−µk))

(3)

The mean µk and the covariance matrix Σk model the local color
distribution within the filter window, and εU is a 3× 3 diagonal
matrix with very small values for numerical stabilization. Il and
µk are 3-vectors (the color channels) and Σk is a 3× 3 matrix of
color-channel covariances.

The weights Wx,x′ are high when both pixels are on the same side of
the mean for correlating color channels and reside within a highly
variant region, and low when either the two pixels have different
colors or the variance in the region is small (a good gray-image
explanation is a also given in [11]). Cost filtering is performed on
each depth layer, but not between depth layers since we have no
guide in the depth direction.

Runtime is independent of the filter radius r (we use 9–24 de-
pending on image size) when using weighted box filters based on
summed area tables, instead of evaluating the weights naively. Our
OpenCL implementation uses a tile-based sliding-window variant
which works in O(n) on the GPU [6].

Finally, the depth map Zl is chosen by seeking the depth label with
minimal cost per pixel.

Zl(x) = argmin
d

C′l(x,d) (4)

4. COST BLOCK EDITING
With the algorithm above (and others [14]) generally generating
good initial depth estimates from stereo footage, errors cannot be
avoided completely particularly on challenging natural scenes, caus-
ing additional artist effort in post-production. Popular causes of
artifacts include:

Occluded regions. Objects that are occluded differently in the two
views can lose significant overlap, hindering unambiguous match-
ing. In a typical stereo configuration, this happens prominently for
any object’s left and right edges, which are each only visible in
one camera. The closer the object is to the camera, the more pro-
nounced the effect becomes. Automated algorithms cannot hope to
recover this error since the information is simply not available. A
human user, on the other hand, is able to provide depth information
for those non-visible parts by simply guessing the objects’s shape.

Ill-textured regions. The majority of stereo algorithms for natural
scenes (as opposed to controlled lab settings) rely on the color con-
stancy assumption, which may be violated by lighting or camera
sensor differences, noise, specularities, translucent objects, caus-
tics, and so on. This hinders recognition of an object in the other
view. Largely uniform or repeating regions in conjunction with
different occlusion boundaries in the two views (e.g. columned
halls, gratings) are also not solvable with the available information.
Again, a human user can assess which objects belong together, and
thus distinguish between true and false features.

The question now is how to integrate human scene understanding
in a way that minimizes interaction times. Currently, the most com-
mon way is to use image editing tools to select a region via roto-
scoping or segmentation, and then use stamp, cloning and other
tools to assign better depth labels. In our approach, we also start
with a lasso selection or mask in 2D image space, but instead of
cloning without validation of the resulting depth, we assign a possi-
ble range in z-direction, forming a 3-dimensional “cost block” Kl ⊆
Cl as shown in Fig. 2. In the first two dimensions, the cost block is
a bounding box around the masked or selected pixels and restricts
x to come from Ω′ ⊆ Ω. In the third dimension, the cost block is
centered around the median depth of the selection med(Zl(x′)) with
x′ ∈Ω′ (other strategies are also possible) and has some extent that
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Figure 4: “Breakdancer” scene from Zitnick et al. [23], a multi-view recording with cameras around 30 cm apart. Here we use only
two adjacent cameras. (a) left and right view (b) initial depth map [11] and 3D scene representation. Due to noise and low-textured
regions, large parts of the wall are ill-matched. (c) a background region is selected and evaluated with the default z positioning. (d)
the cost block is further shifted to the back. Matching the wall improves.

restricts d to come from D′ ⊆ D. The initial extent in z-direction
can either be a fixed parameter or some percentile of Zl(x′).

In a 3D view of the scene, Fig. 2, both the current depth estimate
and the cost block Kl are visualized. An artist can now shift the
cost block along the z-axis until the estimation “snaps” the depth
to the most plausible position. With each step, Zl(x′) is locally re-
evaluated for all pixels in the mask, providing visual feedback in
real-time. The z-extent of the cost block can be widened if objects
in the selected area do not fit into it, or narrowed to eliminate su-
perfluous estimates. As a third option, the depth label subset D′ can
be subdivided to include more depth labels, even to the point where
|D′|> |D|. This increases the accuracy of z-values but takes longer
to compute when the cost block is large.

It should be noted that using cost blocks does not solve the problem
of ill-defined regions in a mathematical sense. Instead, it merely
reduces the effect of incorrect cost computation: In a narrowed set
of labels d′, the cost block Kl(x′,d′) merely evaluates to a more
plausible depth Zl(x′), since a search window Il(x′) has a much
lower probability of being matched to a randomly low-cost window
Ir(π(x′,d′)). In the worst case when no support information can be
found within filter radius r to be aggregated into the filter weights
Wx,x′ , the final depth Zl will be essentially random, but still within
the bounds of D′. When implausible, this would require the artist
to narrow down the z-extent of Kl to a thin slice.

In essence, when thought of in the scope of the entire depth map,
the user interaction cuts away large superfluous blocks from the
cost volume, rather than refining the stereo matching itself.

5. RESULTS
We test the performance of our method both on a classic Middle-
bury stereo scene [14] and on more challenging natural scenes in-
volving wider baselines and more low-textured and repeating re-
gions. The latter are multi-view data sets from which we use only
two adjacent views. All examples use epipolar geometry instead of

rectified footage to avoid re-sampling and support general record-
ing setups. Runtimes are given for an Nvidia 590 GTX graphics
card, with all computation performed in OpenCL. Editing times
are in the order of seconds to minutes and consist of lasso selec-
tions and cost block adjustments.

Fig. 3 shows the Tsukuba scene from the Middlebury stereo eval-
uation data set [14]. Though well-textured, it contains a number
of repeating regions and suffers from poor lighting. Initial depth
estimation takes 0.3 seconds with 24 labels on 384× 288 frames.
The automated cost volume filtering [11] solves the scene gener-
ally well, with the exception of occlusions around the bust head,
lamp, and camera, and some spurious artefacts due to low light-
ing. An area behind the lamp and bust is selected with a lasso (b)
and re-evaluated. While the occlusion artifacts vanish, the default
z-extent has removed the book pile on the right table from the most
probable cost volume region (c). Adjusting the cost block z-extent
re-includes the depth region (d). Finally, an increase in the number
of depth labels refines the layering.

Fig. 4 shows the breakdancer scene by Zitnick et al. [23]. Initial
depth estimation takes 1.9 seconds with 91 labels on 1024× 768
frames. The wall behind the dancers feature little texture and the
recordings are noisy, leading to ambiguous matching (b), which
is improved by the default cost block evaluation (c). Shifting the
wall further to the back reveals more of its true shape, namely its
inclination towards the z-direction (d). In such cases, the number
of z-labels has to be increased in order to allow a smooth transition.

Fig. 5 shows the Sassichan1 scene. Initial depth estimation takes
2.2 seconds with 150 labels on 1024× 540 frames. The auto-
mated cost volume filtering [11] is almost to be considered a failure
case due to the wide baseline coupled with many repeating, fine-
structured patterns over a large number of depth labels (b). Even
with the cost block constraints on the floor, artifacts are reduced
but some remain (c). Shifting the back wall deeper removes many
spurious artifacts from the front of the volume (d). Further coarse
editing, e.g. on the bike stands, improves the result little by little
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Figure 5: “Sassichan1” scene with 1 m interocular distance. (a) left and right view (b) initial depth map [11] and 3D scene represen-
tation, with extremely many ill-matched regions due to repeating patterns, fine structures, and high number of labels. (c) cost block
repair for the floor. (d) cost block repair for the background building. (e) cost block repair of further regions.

(e). The stone wall and the back house wall could also be well ap-
proximated by a simple plane, but not e.g. the bike stand because
it has some z-extent.

Please see the accompanying video for more details.

6. DISCUSSION
The results show that automated cost volume filtering [11] pro-
duces estimates ranging from very good for well-behaved scenes
such as Tsukuba to near-failure cases for complex natural scenes
such as Sassichan1. In all cases, shifting cost blocks around to
impose constraints on the cost volume improves the result. Like
the stereo matching that underlies the user interaction, more well-
behaved scenes benefit more since the cost volume guidance is of
higher quality. When the local depth estimation quality degrades
too much, the guidance approach comes to its limits, and it is ad-
visable to switch to pure image-based depth map painting.

Computational cost for guidance is generally low, since both the
number of pixels and the number of labels is considerably less
when compared to the full cost volume. In our experience, increas-
ing the number of labels has little influence on runtime, because it
is usually outweighted by the influence of the number of pixels. An
interesting alternative would be to use additional variational opti-
mization for depth refinement [9], since its oversmoothing effect
can be neutralized by selecting coherent regions. Furthermore, our
approach currently supports only frame-by-frame edits. Integrat-
ing it into a keyframe-based framework to propagate the depth map
corrections would be a further way to save artist effort.

7. CONCLUSION
We presented an interactive approach to edit depth maps created
from two synchronized input views. By using cost blocks cut from
the stereo matching cost volume as a guide, an artist can approx-
imately indicate the desired depth, and the exact depth is deter-
mined via algorithmic refinement. The user interaction effectively
cuts away large parts of the cost volume, reducing the probability
of erroneous matches. Our approach improves on the results of au-
tomated algorithms, and can be used with any real-time local stereo
estimation method.
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